Combinations¶
Time: O(O(KxC(N,K))); Space: O(K); medium
Given two integers n and k, return all possible combinations of k numbers out of 1 … n.
Example 1:
Input: n = 4, k = 2
Output:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
[2]:
class Solution1(object):
"""
Time: O(K*C(N,K))
Space: O(K)
"""
def combine(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[List[int]]
"""
result, combination = [], []
i = 1
while True:
if len(combination) == k:
result.append(combination[:])
if len(combination) == k or \
len(combination)+(n-i+1) < k:
if not combination:
break
i = combination.pop()+1
else:
combination.append(i)
i += 1
return result
[5]:
s = Solution1()
n = 4
k = 2
# print(s.combine(n, k))
assert s.combine(n, k) == [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
# assert s.combine(n, k) == [
# [2,4],
# [3,4],
# [2,3],
# [1,2],
# [1,3],
# [1,4],
# ]
2. DFS¶
[6]:
class Solution2(object):
def combine(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[List[int]]
"""
def combineDFS(n, start, intermediate, k, result):
if k == 0:
result.append(intermediate[:])
return
for i in range(start, n):
intermediate.append(i+1)
combineDFS(n, i+1, intermediate, k-1, result)
intermediate.pop()
result = []
combineDFS(n, 0, [], k, result)
return result
[8]:
s = Solution2()
n = 4
k = 2
assert s.combine(n, k) == [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
# assert s.combine(n, k) == [
# [2,4],
# [3,4],
# [2,3],
# [1,2],
# [1,3],
# [1,4],
# ]